
Paradox: A Cheap Alternative
to Client/Server?
William Rouck

Client/Server Database Management Systems (DBMSs) are
very expensive. But when you need to provide database
access to a number of different people scattered across the
company or across the globe,you really don’t have any choice.
Or do you? In this article, you’ll discover a very inexpensive
alternative to Client/Server DBMSs that, under the right
circumstances, can give you exactly what you need.

a low-load but nationwide database application. You
might also find this material applicable in cases where the
shared data need is local, but remote access would help
for a few remote users. It can be done cheaply and, if
designed correctly, can serve as a springboard for a true
client/server system when the need arises.

WHEN considering a database platform to service
a Wide-Area Network (WAN) user base, a
systems development shop will typically look at

both what could be done and what makes sense
economically. The developers begin the process by
considering the best possible way to fulfill the business
requirements. The solution often rings up a high price tag
in terms of time and resources. Management will always
step in and take into account the concept of time and
dollars. When these resources are short, new options must
be generated, and those options do exist. Delphi supplies
its low-end packages with the ability to deploy a sound
WAN-deployed application, but only when developers
give special consideration to issues such as network traffic
and application design.

The politics of going national
Planning a nationwide system isn’t easy, because your
system must work with the lowest common denominator.
In a large and widespread organization (departments of
the Federal government, for example), the level of
modernization will vary by location. Some offices are
well-equipped with the latest Pentium workstations
running Windows NT, while others are skating by with
486s running Windows 3.11 in a peer-to-peer
configuration. The bottom line for you is that the
application has to work with all of them. This will mean
writing a 16-bit version of the system without the power
of today’s latest tools, but it can be done.

A client/server DBMS is usually the best WAN
solution. Whether you use Interbase, Oracle, Sybase, or
Microsoft SQL Server, a well-designed client/server
system provides much more power and stability than a
desktop database package.

But, as any client/server veteran will tell you, this
power comes at a price. Considerable resources must be
dedicated to the tasks of database administration and
testing. Of course, if the system happens to be your
multinational company’s 24/7 accounting system, you
gladly spend the money and resources on a solid client/
server system as a matter of survival. However, if the
system is for the guy down the hall to automate his index-
card inventory of small purchase orders, you‘d almost
certainly prefer a desktop database. If the system’s scope
falls somewhere in between, you have more options.

Part one: Application and data design issues
The first step in developing a Paradox-based Delphi
application for deployment over a WAN is to research
your network. Become familiar with how your
nationwide network is configured and its limitations.
Most importantly, identify those responsible for the
various facets of its maintenance. Create a contact list of
the home-base administration Workgroup, as well as the
remote administrators. Bounce your ideas off of them to
see whether they can find any obvious problems with
your connection needs. Keep them informed of your
purpose and progress throughout your development cycle
in order to gain cooperation when you need it during
testing and deployment. You’ll need it when dealing with
Windows Internet Naming Service (WINS) server issues
and network protocol questions.

In this article, I’ll present a solution using Paradox for

The second step is to know how your database will be
stored. I recommend that you host your database on an
NT server. When it becomes time to upscale the

http://www.pinpub.com De/phi Developer December 1997 9

application, you can be sure that a suitable database back
end can be found to run on your hardware and software
platform. Also consider how you’ll access your server in a
crisis. Some organizations don’t allow physical access to
file servers freely, so make sure you can get to yours when
you need to.

The third step is the required-reading phase. In order
to create a stable multi-user Paradox application, you
must be fully aware of the particulars involved. Your first
source is Borland’s Technical Information (TI) Document
#2989, obtainable via search on their Web site at http://
www.borland.com. This document, titled “BDE Setup for
Peer-To-Peer (Non-Dedicated) Networks,” will outline the
requirements for simultaneous connections to your
Paradox database. It also alerts you to requirements that
depend on your mix of 16-bit and 32-bit BDE systems. For
example, 16-bit BDE systems don’t support aliasing by the
Universal Naming Convention (UNC), so you’ll need to
be able to map a drive letter from the remote site to your
database directory. Check out T12770, titled “BDE
Frequently Asked Questions.” Also required is a thorough
study of the Borland newsgroup forums as a get-to-know-
you session with Paradox problems and common errors.

The fourth step is your system design phase, during
which you can‘t forget that you’re shoe-horning a desktop
database platform into a client/server replacement. Every
design decision you make must include an answer to the
following two questions:

l What is the network traffic implication of
this decision?

l How will this decision affect performance for the
low-powered users?

Data issues
While designing your application, you need to
understand how Delphi is going to read your Paradox
data a thousand miles away through a series of hops
and lost packets. The client will consider the remote
directory to be a drive from which the tables will be read.
Your Delphi program will open a form with a filtered
table, displaying a grid of stock items for the user to
choose from.

In a client/server system, the client sends SQL
statements over the network, and the server does the
filtering and returns a result set. However, the Paradox
system will read the remote tables as it would a local set
of tables-reading records one at a time to determine
whether they meet the filter criteria. This generates a lot
of traffic, and a system designed without regard to this
will leave a user waiting for two minutes for your
application to stabilize after reading through 500 records
to display the two the user needed. The reality of
inefficient client filtering must never be forgotten. Your

data should be properly normalized, but analyze it with
a view to how it will be accessed. If you super-normalize
your data, you might cause your application to filter
through six tables to find the data to fill that stock item
grid. Try to group data in ways that make sense given
how it will be retrieved. Optimize your indexes, and
carefully plan your master-detail relationships. Consider
network traffic issues before adding more referential
integrity than you need.

Application presentation issues
If large data downloads are simply unavoidable, then you
need to find ways to give the user the illusion of faster
progress. For example, you want to steer clear of an
application design that loads a multi-megabyte table into
a grid when a window is first opened. The user will
decide it’s taking too long and probably cut off the
computer after assuming it has hung. This can lead to
data corruption problems on the server. Instead, try to
guide the user to what he or she wants via low-overhead
lookup tables, and break the data loading process down
into multiple parts. Segmenting the load process will
work wonders on user perception. For example, instead
of requesting a database password from the user before
establishing a connection and opening the tables, establish
the connection, request the password, and then open
the tables. Breaking long processing jobs into smaller
ones interspersed with some user action will give the
impression that the program is doing something.

Data naming conventions
You’ll ease your future upscale project by basing your
table and field names on the rules of the platform you
hope to move to. Moving your application data from
Paradox to Interbase will be easier and will minimize
application recoding when your field and table names
don’t change. Avoid taking advantage of the feel-good
conventions of Paradox field naming conventions, such as
using spaces within the name. You’ll just have to convert
them all back when it’s time to upscale, which can be a
huge synchronization hassle.

Part two: Deployment and coding issues
As with any wide installation of software, you’ll want to
make installation as trouble-free as possible. It’s a given
that you’ll have to invest in a good BDE-aware
installation package such as Great Lakes Business
Solution’s WISE Installer (http://www.glbs.com). As
you’ll learn from the Borland Technical Information
Documents, there’s a BDE parameter that must be set
correctly for multi-user Paradox databases: Local Share.
It must be set to TRUE in the IDAPI configuration or
your clients will frequently lose their changes to the
database due to improper flushing of cached updates.
Unfortunately, this parameter is set to FALSE by default

c

10 Delphi Developer D e c e m b e r 1 9 9 7 http://www.pinpub.com

in the BDE setup, and the major installation packages
won’t allow you the option of setting it automatically
(they blame it on Borland). My suggestion is to properly

e
script your installation program to alert the user that the
parameter must be set and to describe exactly how to do
it, even going as far as having the installation package
launch the BDE Configuration Manager for the user’s
convenience. I make it a practice to code the client
application to check this parameter upon launching,
scolding the user and terminating if this parameter is set
incorrectly. There are several freeware components
available that allow you to check the value of these
parameters at runtime.

Another deployment issue is making sure that the
installation procedure properly sets the stage for a
successful remote database mapping. Most BDE-aware
installation packages allow you to specify aliases to be
created, but I recommend setting this programmatically.
This mapping is a multi-step process that’s often not
satisfied by an alias alone. The more of this you control
in code, the fewer hours you’ll spend troubleshooting
problems over the phone with a user 600 miles away.

Step one: Drive mapping
Remote office LANs will have different standards for
drive letter mappings, so you can’t assume a given
drive letter will be free. I recommend programmatically
finding a free drive letter instead of allowing the user to
choose one. This can be done by dropping an invisible
DriveComboBox component on your application’s main
form. The code in Listing 1 will use this component and a
TStringList to find a free drive.

Listing 1. Finding a free drive letter.

{Make sure drive box combo drive letters are
lower case for search purposes)

DriveComboBox.TextCase := tCLowerCase;

{Create StringList of drive letters available}

DriveList := TStringList.Create;
DriveList.Assign(DriveComboBox.Items);

(Step through list until drive 'C' is passed)
Index := 0;
CurrentDriveLetter := '';
MaxxedOut := FALSE;

while (CurrentDriveLetter < 'd') do
begin

CurrentDriveLetter :=
copy(DriveComboBox.Items[Indexl, 0, 1);

if Index < DriveComboBox.Items.Count then
begin

Index := Index + 1;
end
else
begin

WaxxedOut := TRUE;
break;

end; (if Index)
end; {while)

http://www.pinpub.com

(Increment through alphabet until a gap is
found. If the drive list is already full
(that is, no drives past 'c'), set the drive
letter to 'j'.)

TestDriveLetter := 'd';

if MaxxedOut = TRUE then (no drives beyond 'd')
begin

TestDriveLetter := 'j';
end (MaxxedOut = TRUE)
else
begin

while (TestDriveLetter = CurrentDriveLetter) do
begin

TestDriveLetter := succ(TestDriveLetter);
Index := Index + 1;
CurrentDriveLetter :=

copy(DriveComboBox.Items[Index -1], 0, 1);
end; (while)

end; (MaxxedOut = FALSE)

(When the above loop finds an unequal drive
letter, an unassigned drive has been found.)

DriveList.Free;

Next, create the connection to the NT server
database directory share point and map it to the free
drive letter. Use dbiGetUserName to pass the user ID
to the server (see Listing 2), and the Windows API call
WNetAddConnection to perform the mapping.

Listing 2. Perform drive mapping.

(Begin setting parameters for network drive login)
(pass the mappable drive letter)
StrPCopy(lpszLocalName, TestDriveLetter + ':');

(pass the NT server name and share point)
StrCopy(lpszNetPath, '\\servername\sharepoint');

(Get user's local WfW, Win95, or Novell login ID, which
you've used to create an account of the same ID on the
host NT server)
DbiGetNetDserName(userid);

{Prompt user for NT password)
BadPassword := FALSE;
PasswordDialogBox.UserIDLabel.Caption := userid;
PasswordDialogBox.ShowModal;
if (PasswordDialogBox.ModalResult = mrOK) then

begin
StrPCopy(lpszPassword,

PasswordDialogBox.PasswordF.ditBox.Text);
end

else
begin

BadPassword := TRUE;
end; (if)

{continue with connection attempt now that all needed
parameters are known)
if BadPassword = FALSE then

begin
(attempt network drive mapping)
result := WNetAddConnection(lpszNetPath,

IpszPassword,
1pszLocalName);

if (result = 7) then
begin

Dialogs.ShowMessage ('Bad password');
BadPassword := TRUE;

end
else

Delphi Developer D e c e m b e r 1 9 9 7 11

if result <> WRSUCCESS then
begin

MessageDlg('Could not attach drive',
mtInformation, [mbOk], 0);

BadPassword := TRUE;
end;

end; (if)

Step two: Alias and Paradox Net File directory
Set the alias and the Paradox Net File location by
adjusting the properties of the TDatabase component and
your application’s TSession variable, as shown in Listing
3. All clients must point to the same PARADOX.NET file;
otherwise, record lock tracking won’t work and your
users will get the cryptic “Multiple .NET Files in Use”
BDE error message. Note that the Net file mapping must
be identical for all clients. The only allowed difference in
the path specification is the drive letter.

Listing 3.Set alias and paradox net directory.

with Database1 do
begin

Close;
Params.Clear;
DatabaseName := 'MYTABLES';
DriverName := 'STANDARD';
Params.Add('PATH='+ TestDriveLetter + ':\tables');

{tables is the tail-end of your real path, which is
~\\sharepoint\tables". This conforms to Borland's
suggested directory layout in TI2989)

end; {with)

Session.NetPileDir := TestDriveLetter + ':\netfiles';
Databasel.Connected := True;

Step three: Cleaning up
When your program terminates, close your mapped
connections with the WnetCancelConnection API call (see
Listing 4) and reset your IDAPI Configuration parameters.

Listing 4.Closing mapped connections.

databasel.close;
Session.DropConnections;
Session.NetFileDir := '';
strPcopy(drive, TestDriveLetter + ':');
result := WNetCancelConnection(drive, False);
if result <> WN_SUCCESS then

begin
MessageDlg('Could not detach drive ',

tInformation, [mbOk], 0);
end;

Part three: Deployment and coding issues
As a final deployment issue step, test your entire
installation procedure at a remote site and find a willing
administrator contact to go through the process with
you. Make sure you’ve properly automated the entire
process from installation to successfully loaded tables.
Review your setup instructions during the test to make
sure they’re easy for others to follow. Completely detail
all steps.

Conclusion
Carefully following these procedures will get your WAN
multi-user application up and running against Paradox.
Remember that success is determined by your design
planning. You won’t have the performance of an
expensive client/server system, but you’ll end up with a
cheap and functional multi-user system.

William Rouck is a consultant working with California Institute of

Technology’s Jet Propulsion Laboratory. His systems experience includes

inventory management and client/server management information

systems. wrouck@pop.jpI.nasa.gov.

\
yaminov@trendline.co.il Q

12 Delphi Developer December 1997

